Numerical Study of Microscale Gas Flow-Separation Using Explicit Finite Volume Method

نویسندگان

  • A. Chaudhuri
  • C. Guha
  • T. K. Dutta
چکیده

Pressure driven microscale gas flow-separation has been investigated by solving the compressible Navier-Stokes (NS) system of equations. A two dimensional explicit finite volume (FV) compressible flow solver has been developed using modified advection upwind splitting methods (AUSM+) with no-slip/first order Maxwell’s velocity slip conditions to predict the flowseparation behavior in microdimensions. The effects of scale-factor of the flow geometry and gas species on the microscale gas flowseparation have been studied in this work. The intensity of flowseparation gets reduced with the decrease in scale of the flow geometry. In reduced dimension, flow-separation may not at all be present under similar flow conditions compared to the larger flow geometry. The flow-separation patterns greatly depend on the properties of the medium under similar flow conditions. Keywords—AUSM+, FVM, Flow-separation, Microflow.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Enhanced Flux Treatment in Solving Incompressible Flow in a Forward-Facing Step

The aim of this paper is to give a detailed effect of several parameters such as step height, Reynolds number, contraction ratio, and temperature difference between the entrance and solid boundaries, of a forward-facing step. An accurate length of separation and reattachment zones are achieved. A finite-volume method (FVM) has been developed to study incompressible flow in a forward-facing step...

متن کامل

Pressure-Velocity Coupled Finite Volume Solution of Steady Incompressible Invscid Flow Using Artificial Compressibility Technique

Application of the computer simulation for solving the incompressible flow problems motivates developing efficient and accurate numerical models. The set of Inviscid Incompressible Euler equations can be applied for wide range of engineering applications. For the steady state problems, the equation of continuity can be simultaneously solved with the equations of motion in a coupled manner using...

متن کامل

Numerical Investigation on Compressible Flow Characteristics in Axial Compressors Using a Multi Block Finite Volume Scheme

An unsteady two-dimensional numerical investigation was performed on the viscous flow passing through a multi-blade cascade. A Cartesian finite-volume approach was employed and it was linked to Van-Leer's and Roe's flux splitting schemes to evaluate inviscid flux terms. To prevent the oscillatory behavior of numerical results and to increase the accuracy, Monotonic Upstream Scheme for Conservat...

متن کامل

Numerical Simulation of the Hydrodynamics of a Two-Dimensional Gas—Solid Fluidized Bed by New Finite Volume Based Finite Element Method

n this work, computational fluid dynamics of the flow behavior in a cold flow of fluidized bed is studied. An improved finite volume based finite element method has been introduced to solve the two-phase gas/solid flow hydrodynamic equations. This method uses a collocated grid, where all variables are located at the nodal points. The fluid dynamic model for gas/solid two-phase flow is based on ...

متن کامل

Finite Volume Solution of a Cylinder in Cross Flow with Heat Transfer

A finite-volume model has been developed to study incompressible forced flow heat transfer of air over a circular cylinder in cross flow. An artificial compressibility technique is applied to couple the continuity to the momentum equations. The proposed explicit finite-volume method (FVM) uses a novel discretization in time and space. The governing equations are solved by time-marching using a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012